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The principal aim of this paper is to show that the variation of viscosity in a fluid 
can cause instability. Plane Couette-Poiseuille flow of two superposed layers of 
fluids of different viscosities between two horizontal plates is considered, and it is 
found that both plane Poiseuille flow and plane Couette flow can be unstable, 
however small the Reynolds number is. The unstable modes are in the neighbour- 
hood of a hidden neutral mode for the case of a single fluid, which is entirely 
ignored in the usual theory of hydrodynamic stability, and are brought out by 
the viscosity stratification. 

1. Introduction 
In  this paper the stability of two superposed fluids of different viscosities in 

plane Couette and Poiseuille flow is considered. General formulas for calculating 
the eigenvalues of the complex wave velocity and thus for determining the 
stability or instability are given. Numerical calculations based on these formulas 
for plane Couette flow and plane Poiseuille flow for equal densities of the fluids 
have brought out the rather surprising result that the flow can be unstable at any 
Reynolds number, however small. Since for a single fluid plane Couette flow is 
known to be stable for all Reynolds numbers, however large, and plane Poiseuille 
flow is stable except at large Reynolds numbers, the instability mentioned above 
can only arise from the viscosity difference. The instability is even more striking 
if we consider first the plane Couette flow of a single fluid, which is stable. Upon 
increasing the viscosity of a layer of this flow, it becomes unstable. 

The instability mentioned can already be inferred from the thesis of Sangster 
(1964). But his work was limited to an almost vertical flow. Therefore the 
instability he found is still mainly due to the longitudinal component of gravity. 
Only the increase of the degree of instability by viscosity variation found by him 
is pertinent to the present work, in which the body force has no longitudinal 
component. 

2. The primary flow 
Since it has been shown by Squire (1933) for channel flow of a uniform fluid 

between rigid boundaries, and later by Yih (1955) for stratified fluids, that it is 
sufficient to consider two-dimensional disturbances, we need only to write down 
the equations governing two-dimensional motion of viscous fluids. From these 
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the primary flow can be readily determined. These equations are the Navier- 
Stokes equations 

(1)  - '' + vAu, Du 
Dt p a x  
_ -  

in which u and v are the velocity components in the directions of increasing X 
and Y, as shown in figure 1, t is the time, p the density, p the pressure, v the 
kinematic viscosity (p/p), A the Laplacian in X and Y, and 

~a a a Dt - -  - g+u-sv- 
ax ay' 

The direction ofincreasing Y is the direction of the vertical, so that theX-direction 
is horizontal. This is to avoid having a longitudinal component of gravity, which 
has been known to be destabilizing (Benjamin 1957; Yih 1954,1963; Kao 1965), 
and thus to focus the cause of any instability to be found on the viscosity variation. 

The primary flow (figure 1) has only one velocity component Z, which is inde- 
pendent of t  and x. (2) states that p+pgY is independent of Y, and (1) states 
that dp/dX is independent of X. Hence 

K = - d j q d S ,  (3) 

d2U/d Y2 = -KIP, (4) 

in which K is a constant. (1) then can be written as 

in which p takes the value p1 for the upper fluid and p, for the lower fluid. 
(4) is to be solved for each fluid, with the boundary conditions that U is equal to a 
specified U, on the upper boundary and zero on the lower boundary, and that U 
and the shear stress p dU/d Y must be continuous at  the interface. 

If U, is not zero, the dimensionless mean velocities in the two layers are defined 
t o  be 

In terms of the dimensionless co-ordinates 
U, = UJU,, U2 = U2/Uo. (5) 

x = S/d , ,  y = Y/d,, (6) 

u, = A,y2+a1y+b, (7) 

u, = A,y2+a2y+b, ( 8 )  

(9) 

(10) 

u, = U,/U(O), u, = U 2 / U ( 0 ) .  (11)  

the mean-velocity distributions are 

in which 8 2  = - (+KIP2 U,)d2,, A ,  = mA2, 

u z  = (1 +A9(n2- m)>l(m + n),  
b =  ( l - A l ( l  +n)}n/(m+n), 

01  = ma,, 

with "L = p2/p1, n = d2/d, .  

If E(d,) = 0, it is convenient to define 
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The general expressions for U, and U, can be easily written. Since for U, = 0 we 
shall treat only the special case in which p1 = p ,  and d, = d,, these expressions 
will be given only for the case n = 1 and r = p2/pl = 1: 

Y 

FIGURE 1. Definition sketch. 

in which the subscripts 1 and 2 refer to the upper and lower fluids, respectively, 

a, = +(m- l ) ,  

u2 = &( 1 - l /m),  

b, = - &(m+ l ) ,  

b, = - *( 1 + l/m). 

The reference velocity is the interfacial velocity, or U at y = 0. For the case 
U, = 0, n = 1 and r = 1, it  is quite immaterial whether m is greater or less than 1. 
For definiteness we shall assume m > 1 in that case. 

The velocity gradients at the interface are different for the two fluids if m + 1. 
This is what makes the instability considered here possible. 

3. The differential system governing stability 
It is well known that the differential equation governing stability is the Orr- 

Sommerfeld equation. In  order to derive the normal-stress condition a t  the 
interface, one equation occurring in the derivations of the Orr-Sommerfeld 
equation is needed. For this reason, and for the sake of clarity and completeness, 
a brief derivation of that equation is included. 

Apart from the equations of motion, the equation of continuity 

must be satisfied. We shall consider the upper layer first. With V denoting 
U, or ;Li(O), as the case may be, the substitutions 

22-2 

(a,.;) = (u, V ) / V ,  (x, Y )  = (5, Y)/d, ,  
i; = p / p l  V 2  and r = t V / d ,  
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can be used to put (l) ,  (2) and (15) in the dimensionless forms: 
D& 1 

DO 1 

- = - ?? + - A,@,, 

- = - ?? + __ A8, 

07 ax R 

ay R 

and a a  a8 - + - = o ,  
ax .aY 

in which R is the Reynolds number p, Vd,/p,, A now stands for the Laplacian 

-+- a 2  a 2  

ax2 ayZ7 

and D a , a  a 
- + u - + T j  - . 

DT a7 ax ay 
_ -  - 

As usual, the motion is resolved into the primary motion and the perturbation 

(16) 
motion. Thus 

in which P is the dimensionless pressure for the primary flow. The equation of 
continuity is now in the form 

aui avl -+- = 0, ax ay 

a = UI+U1, a = v’, @ = P+p’ ,  

which permits the use of the stream function @, in terms of which 

Ul = 1/TY, v1 = -9 X )  (17) 

with the subscripts indicating partial differentiation. We shall now assume an 
exponential time factor for all perturbation quantities, and write 

(@%P‘) = {$(y),f(Y)}exPia(x-cT), (18) 

in which c = c, + i ~ , ~ .  The stability or instability is then decided by the sign of ci. 
If (16), (17), and (18) are substituted into ( l a )  and (Za),  terms pertaining only to 
the primary flow are cancelled out, and quadratic terms in perturbation quantities 
are neglected, we have 

ia{(U, - c )  $‘ - u; $} = - iaf+ R-l($” - a2$’), 

a2( c - U,) $ = f ’ + (ia/R) (4” - a”), 
(19) 

(20) 

in which primes on q5 and U indicate differentiation with respect to y. Elimination 
off from (19) and (20) produces the well-known Orr-Sommerfeld equation 

$iV - 2a24“ + a4$ = iaR{( U,- C) ($I‘  - a’$) - UI$}, (21) 
which, together with the boundary conditions, governs the stability problem. 

Equations (19), (20) and (21) are for the upper fluid. Por the lower fluid, we 
choose to retain the substitutions (15) and the meanings of R and f ,  and to write 
x for q5. (19) and (20) then become 

119 a )  iar{(U, - c )  2‘ - u; x} = -;a$+ (m/R) (2” - a y ) ,  
a2r(c - U2) 2 = f ’  + (iam/R) (x” - a 2 ~ ) ,  
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and (2 1) becomes 
xiv-  2a2x" + a4x = iaRm-%{( U2 - c) (x" - a2x) - Uix}.  (31a) 

The boundary conditions are 
#(1) = 0, #'(I) = 0, 

x( -n) = 0, x'( -n )  = 0 

(expressing the condition of no slip at the rigid boundaries) and the interfacial 
conditions. The latter group consists of the conditions of continuity of velocity 
and of stresses. The continuity of v' (on which the accent does not indicate 
differentiation) demands 

The continuity of u' must be formulated with more care, because the quantity 
U' is not continuous across the interface, and because the condition is to be 
imposed at y = 7 (deviation of interface from its mean position) rather than a t  
y = 0. Since (;+ u:) 7 = v' = -ia$(0)expia(z-c7), 

(24) # ( O )  = x(0 ) .  

we have c' = c- U(0).  

The continuity in u' then demands 

or 

The continuity of shear stress is expressed by 
#"(O) +a"(O) = rn(X"(0) + a"(0)). (27) 

Note that this boundary condition can be applied right at y = 0, for the gradient 
of shear stress is the same for both layers, so that the displacement of the surface 
can be ignored as far as the shear-stress condition at the interface is concerned. 

The normal-stress condition a t  the interface is more complicated. The 
difference of the quantity 

evaluated for the upper fluid and that for the lower fluid must be 
!P 827 
dl ax2 * 

_ _ _  (29) 

In (28), the first term gives the negative of the hydrostatic pressure increment as 
y varies from zero to 7, and the other terms are evaluated at  y = 0,  for either 
fluid. In  (29) T denotes the surface tension. Expressed in dimensionless terms, 
the normal-stress condition is, upon utilization of (19) to evaluatef and hence p' 
for either fluid and of ( 2 5 )  to evaluate 7, 

- iaR(c'#' + a1 #) - (4"' - a'#') + 2a2$' + iraR(c'~'  + U, X) 
+ m(x" - a2X') - 2a2mX' = ~ c x R ( P - ~  + a2X) $/c', (30) 



342 Chia-Shun Yih 

in which all variables are evaluated at y = 0, and 

(In any comparison of ( 3 0 )  with equation ( 2 5 )  in Yih (1963) ,  the reader has to 
keep in mind the change of direction of the Y-axis.) 

In  the special case p1 = p2, or r = 1 ,  ( 3 0 )  assumes the simpler form 

m ( ~ ”  - 3 ~ x 2 ~ ’ )  - (4’”- 3a2q5’) = ia3RSq5/c’ at y = 0. ( 3 0 a )  

The differential system governing the stability problem consists of (21 ) ,  (21 a) ,  
(22), (23 ) ,  (24), (26 ) ,  ( 2 7 )  and (30 ) .  It d e h e s  an eigenvalue problem in the sense 
that given am, n, r ,  F ,  R and S, c has to take on certain values for the solution 
not to be identically zero. The flow is unstable, neutrally stable, or stable according 
as ci is positive, zero, or negative. 

4. Solution for the case of moving upper boundary 
In  this case U $. 0 a t  Y = d,, and V is U,. We shall adopt the method used by 

Yih (1963),  which is essentially a method of non-singular perturbation around the 
case of a = 0, which corresponds to very long waves. The quantity aR is assumed 
to be small compared with 1. Thus, however large R is, there is a small enough 
range of a for which the perturbation procedure is valid. 

In  the first approximation, all terms containing a in the differential system are 
ignored. In  the second approximation, all terms containing a2 and higher orders 
of a are ignored. Thus for the first approximation (21 )  and ( 2 l a )  become 

$;= 0 and ~2 = 0, (32 )  

in which the subscripts zero indicate the first approximation. The boundary 
conditions (22 ) ,  (23 ) ,  (24), and (26 )  remain as they stand except that the variables 
all have subscripts zero, whereas (27 )  and ( 3 0 )  become 

&(O)-mx,”(O) = 0, (27 a )  

and $;(o)-mx;(o) = 0. (30b)  

Solution of the differential system just formulated for a = 0 gives 

in which 

2 ( m + n 3 )  n2 
’- m n  m ’’ 

B - +-B 

n2-m 
- 2mn2(1 +n)’  

D ,  = mD,, D - 
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The eigenvalue c; is c,,- b, and is determined by (26) ,  which gives 

a --a 

B, - B, 
2mn2( 1 + n) (a,  - a,) 

m2 + 2mn(2 + 3n + 2n2) + n4' 
c;, = -3 - - (34)  

When m = 1 ,  a, is equal to a,, and c; = 0. If $,(O) is not zero, the vanishing of c; 
would seem to make 7 infinite and present a difficulty. Actually if the magnitude 
of 7 is taken to be the standard, this situation merely means that when ch = 0 the 
velocity perturbations represented by $ ( y )  and $'(y)  are all zero, and only a 
corrugation remains. This point is intimately related to the difference in character 
of the unstable modes to be presented in this paper and the unstable modes 
treated in the usual theory of hydrodynamic stability. 

The equations to be solved in the second approximation are 

& = iaR(( U, - c0) &' - 2A, Qo}, 
xl = iaRm-4{( CG - co) xi - 28 ,xo} ,  

(35)  

(36 )  and 

in which 2Al has been written for Ul; and 2A,  for UL, according to ( 7 )  and (8). 
The solution for (35 )  is 

$1 = AB1 y + AC, y2  + AD,  y3 + iaRh,(y),  (37 )  
in which 

The solution of (36) is 

x 1  = AB2 y + AC2 y 2  + A D ,  y3  + iaRm-Irh,(y), (39) 
in which 

, y 4 .  (40 )  A2D2 a,D, a , C , - 3 c ~ D 2 - A , B ,  c ;C ,+A 
h,(Y) = m Y  + T Y  + 60 y -  12 

In  (37 ) ,  the first three terms constitute the complementary solution necessitated 
by the last term, which is the particular solution. The term of zero degree in y 
is taken to be zero in (37) .  The argument is that the solution of the eigenvalue 
problem is determined only up to an arbitrary constant factor. We have taken the 
constant term of $ in (33)  to be 1 .  We can and shall keep it at that value once and 
for all. That this will not deprive us of the possibility of satisfying the boundary 
conditions will presently be seen. For more detailed arguments, see Yih (1963, 
p. 326). Then the term of zero degree in y must also be zero in (39 ) ,  as demanded by 
(24). The boundary conditions ( 2 2 ) ,  (23), and (27)  assume the forms 

AB,  + AC, + AD,  + iaRh,( 1 )  = 0, ( 2 2  a )  

AB,  + 2AC1 + 3AD, + iaRh;( 1) = 0, ( 2 2 b )  

- AB,  n + AC, n2 - A D ,  n3 -+ iaRm-%h,( - n)  = 0 ,  (23a)  

AB, - 2AC, n + 3AD,n2 + iaBw-lrhi( - n) = 0, (93b)  

WAC, = AC,. (27b)  
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We are then left with (26) and (30) to  contend with. To the present order of 
approximation, (30) assumes the form 

mxf - $f = iaR{($,/c; P2)  - r(ch xh + a2 xo) + (ch &, + a, $,)), (30c) 

to be applied at y = 0. But (24) and (26), when applied to the first approximation, 
were 

M 0 )  - xh(0) = {$,(0)/ch) (a2 - a,) and $0(0) = X O ( 0 ) .  

Hence (30c) can be written further as 

mxy - 4: = iaR{(q5,,/cAP2) - (r - 1) (c; $6 +a, $,)I, 

6mAD2 - BAD, = iaR{( l/chP2) - ( r  - 1)  (ch B, + a,)). 

(30d) 

to be applied at y = 0. Thus 

(30e) 

As to (26), its form for the second approximation takes some care, because c‘ also 
suffers a perturbation. With this in mind, and remembering that both $,(0) and 
~ ~ ( 0 )  are zero, (26) becomes 

- xi@) = - {Ac$o(0)/cA21 (a2 - a,), 

in which Ac is the change in c and is of course identical with Ac’, since U(0)  does 
not change. Hence 

(AB, - AB,) ch2 = - Ac(a2 - a,). ( 2 6 4  

The six A-coefficients can be found by solving (22a,b), (23a,b), (27b), and 
(30e). Then Ac can be found from (26a). The result is 

Ac = ici, ci = aRJ(m, n, r ,  A,) ,  
in which 

J = - (  m-l ch2 
a, - a2 

with hi = hi( l) ,  hl = h,( 1) 

H2 = rh2( -n)-Qn3{(l/chF2)-(r- 1) (c~B,+a,)}, 

J2 = r h ~ ( - n ) + ~ n 2 { ( l / c ~ P 2 ) - ( r - l ) ( c ~ B 1 + a l ) } .  

The method of regular perturbation adopted here has greatly reduced the 
algebraic work which otherwise would be necessary. But it is still desirable to 
provide an independent check of the correctness of (34), and the final results (41) 
and (42). For (34), the check is provided by the requirement that ch = c , -b  
(b = mean velocity at the interface) must be equal in magnitude and opposite 
in sign if r = 1 and the depths and the viscosities of the layers are interchanged- 
or if m is replaced by m-l and n by n-l. Equation (34) withstands this test. For 
(41), the test is that the same interchanges should leave ci (though not J )  
unchanged. (41) and (42) withstand this test. The author has checked these 
equations several times, and Mr Chin-Hsiu Li has checked them independ- 
ently. They are free from errors. The numerical results obtained by the use of a 
computer also withstand the tests, indicating that the numerical results are also 
free from errors. 
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FIGURE 2 (a). Variation of J with the viscosity ratio m for various values of the depth ratio 
n < 1 for plane Couette flow with uniform density, showing instability. 
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FIGURE 2 (b) .  Variation of J with the viscosity ratio m for various values of the depth ratio 
n > 1 for plane Couette flow with uniform density, showing extensive regions of 
instability. 
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From the definition of J given by (42) and for r = 1, the writer has verified that 
J vanishes as (m- 1)2 for n = 1 and as m- 1 for n + 1, as m approaches 1. This 
point will be discussed further later. 

To see whether the ci calculated from (41) can be positive, numerical calcula- 
tions have been carried out for the special case A ,  = 0 and r = 1. This is plane 
Couette flow, since there is no longitudinal pressure gradient in the mean flow. 
Since r = 1, there is no density difference, so that gravity has no effect on the 
phenomenon whatsoever, aside from imparting a hydrostatic part to the pressure. 
Keeping (41) in mind, one concludes from figure 2(a) that for n < 1 the flow is 
unstable for all m greater than 1, with the instability greatest, for fixed aR, at 
some value of m between 2.5 (approximate) for n = 0.1 and 35 for n = 1. 

For n > 1 and m > 1 the variation of J with m and n is given in figure 2(b). 
The value of J for m = 1 and different values of n is zero although the scale of 
figure 2 (b) does not allow two of the curves to be continued conveniently further 
to the left. Keeping this in mind, one can see from figure 2 (b) that for n = 1.35 a 
region of stability exists between m = 1 and m = 9 approximately, and that for 
n = 2.5, 5 and 10 the flow is stable up to m = 70 at least. 

It can be directly verified from (42) that 

m 

which corresponds to the statement that ci is unchanged if the depths and 
viscosities of the layers are interchanged. This formula has been verified numeri- 
cally. With this formula, the values of J for m < 1 for the n-values in figure 2 (b) 
can be obtained from the values of J given by the lower four curves in figure 2 (a)  
for m > 1, and vice versa. 

Whenever the flow is unstable, the instability occurs at  all Reynolds numbers, 
however small, although ci does approach zero as R approaches zero. The 
instability is entirely due to viscosity variation. If r > 1, the gravity term in H .  
and J2 will be stabilizing, and the destablizing effect of viscosity variation may be 
overshadowed. 

5. Solution for the case of stationary boundaries 
This is the case of plane Poiseuille flow. Since the general formulation has been 

amply illustrated in the preceding section, we shall further restrict ourselves to 
the case r = 1 and n = 1. Thus the two layers are of equal depth and have the 
same density. The mean velocity in the layers are given by (12) and (13). As 
mentioned in 0 2 ,  m can be assumed greater than 1 in the special case considered 
here. 

Following the same approach as in 0 4, we have 

Q f o =  1+B,y+C,y2+D1y3, (43) 

of which the first term on the right-hand side has been assigned the value unity 
once and for all, and 

x0 = 1 + B 2 y + C 2 ~ 2 + D 2 ~ 3 .  (44) 
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The first term in (44) has been determined by (24). The other boundary conditions 
determine the other coefficients to be 

B, = -$(7+m),  B2 = $(1+7m)/m, C, = $(l+m),}  
(45) 

C, = mC,, D, = +( 1 - m), D, = mD2, 
and the eigenvalue to be 

c0 = 1 + ~ ( w z -  l)'/(m2+ 14m+ 1). (46) 

Before going to the second approximation, we shall pause to consider (46) 
and see whether the velocity of the primary flow is equal to co at some point in 
the flow. Such a point has been called the critical point in the literature. It needs 
special attention if the viscous terms in the Om-Sommerfeld equation are 
neglected at large Reynolds numbers to provide two (out of a total of four) 
asymptotic solutions, or if the diffusive terms in the linearized diffusion equation 
(if diffusion is part of the problem) are neglected. In  the present problem we are 
not using any asymptotic solutions of the sort that require special treatment of 
the critical point. Hence the point at which U = c is really not critical except 
perhaps at  y = 0, where one boundary condition, (26), involves c- U ( 0 )  or c - 1. 
But since n is not equal to 1, (46) shows that co is never equal to 1. 

We now proceed to the second approximation, and to solve the equations 
$q = i&{( u, - co) $; - r-Q0},  

and X? = iaRm-l{( U, - c0) ~ 0 "  - u'ix0}. 
The solutions are 

$1 = AB, y + AC1 y2  + AD1 y3 + iaRhi(y), (47) 

2, = AB2y+ AC2y2+AD2~3+iaRm-1h2(y) ,  (48) 

in which the variation of the first term in (44) is zero because of (24), and 
m2- 1 (m- 1)' m4+ 1 8 d -  156m2-98m-21 

Y5 . _ _ ~ _ _ _ _ _  y6 +- 480(m2 + 14% + 1) h,(y) = -y'- __ 
1680 480 

m2-1 (m-1)2 21m4+98m3+156m2-18m-1 
h2(y) = m 2 y 7 - = y 6 +  480m2(m2 + 14m + 1 )  Y5 

The boundary conditions lead, in a manner similar to that explained in 5 4, to 
AC = i ~ i ,  ci = 8aRH3, 

in which 
- 

) z  [ - $(m+ 1)  {h,(l) +h2( - 1) + h;l( - 1) -hi( l)} H3 = (m2+ 14m+ 1 

- a(m- 1) {h,( 1) -hi( 1) - h2( - 1) -hi( - I)} - mh,( 1) - h2( - l)]. (52) 

Equations (46) and (51) must pass the test that if the viscosities are inter- 
changed, that is, if m is replaced by l/m, both c; ( = co - 1) and ci must remain 
unchanged. They do pass the test. 
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The function H3 is plotted against m in figure 3, in which it can be seen that, for 
the case of equal depths and equal densities at least, plane Poiseuille flow is 
always unstable at any Reynolds number, however small. Note that since (52) 
indicates that H3 vanishes as (m - 1)2 as m approaches zero, the curve in figure 3 
dips asymptotically near the axis rn = 1 as m approaches 1. 
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m 

FIGURE 3. Curve showing instability of plane Poisouille flow, 11 1 r .  

6. Discussion 
The instability found in this paper can be regarded in two ways. In  the first, 

the fluid is considered to be viscous to start with, and flows which are known to 
be stable for all Reynolds numbers or unstable only a t  high Reynolds numbers 
have been found to be unstable for any Reynolds number whatsoever if the 
viscosity varies from layer to layer and the depth ratio and the viscosity ratio 
are within certain ranges. In  the second, the fluid can be regarded as inviscid and 
the velocity profile is assumed to have a discontinuity in slope. The stability of 
such flows have been studied by Rayleigh (1894, pp. 382-98) who found that the 
flows are stabIe when the slope of the velocity profile varies monotonically and 
unstable otherwise. The analogue of this conclusion when the velocity profile is 
continuous is well known. In  the present work flows (such as plane Couette flow 
with a broken-line velocity profile) which are stable when the fluid is considered 
inviscid have been shown to be unstable when the viscosity is considered. From 
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this point of view, the instability found here is due to the existence of viscosity. 
Of course, to obtain the velocity profiles treated in this work, the viscositymust 
vary from layer to layer. 

What does finally become of the flow when it is unstable and disturbed slightly? 
Since the instability, when it exists, exists for any Reynolds number however 
small, one certainly does not expect turbulence to be the final result of instability 
when R is small. The long waves considered here will grow, but as soon as their 
amplitude becomes finite non-linear effects must be taken into account. Thus the 
present work can be considered to have demonstrated the possibility of finite 
waves in superposed layers of fluids of different viscosities. 

But the results obtained still seem to run counter to intuition. To make them 
Gdible we shall show how they can be reconciled with the known results that 
plane Couette and plane Poiseuille flows for a single layer are either stable or at  
least stable for low Reynolds numbers. A single-fluid layer is obtained if the 
viscosity and density of one layer become the same as those of the other layer, 
or if the viscosity of one layer becomes infinite while that of the other layer 
remains finite. We shall discuss the two cases separately. 

To see what happens if the density and viscosity of one layer become equal to 
those of the other, consider the results (41) and (51), both of which are for the 
case of equal density. Remembering (9), (34), and (42), we see after a brief 
calculation that both (41) and (51) give, for n = 1, 

__. 

ci = O{(m- l)z). (53) 

For n =k 1 one can show from (41) that ci vanishes as m- 1 as m approaches 1. 
Thus ci vanishes as m- 1 or (m- 1)2 as m ( =,uz/,ul) approaches unity. Does this 
contradict the known results that there is no neutral mode for long waves at  low 
Reynolds numbers? Superficially it seems to, but not in reality. Long waves in 
plane Couette or plane Poiseuille flow are damped according to long established 
results. But the mode considered in the investigations producing those results is 
quite different from the mode considered here. First of all, in those investigations 
ac is supposed finite. This already rules out finite c for the very long waves 
(vanishing a) considered here. For a detailed discussion, see Yih (1963, pp. 330-4). 
The mode considered in this paper reduces to a neutral mode for long waves as m 
approaches 1, but it is quite a different mode. Not only is c finite, but U - c  is 
zero a t  the imaginary interface-imaginary when m actually becomes unity. 
Since q5 is not zero at y = 0 according to (33) and (43) for any m different from 1, 
and therefore is not zero in the limiting case of m = 1, and since we can take the 
magnitude of q- as the standard magnitude of the perturbation, when U - c  
vanishes at y = 0 in the limiting case of m = 1 the only conclusion to be drawn is 
that when m is equal or nearly equal to unity q5 is generally an order of magnitude 
smaller than 7, so that the mode is characterized 'by zero? perturbation in 
velocity and the existence of only a corrugation of the interface, in the limiting 
case, or by very small velocity perturbation compared with 7, in case m is nearly 
equal to unity. The mode being discussed here for the limiting case of m = 1 is so 
drastically different from the damped long-wave modes in the usual theory, that 

t After demanding that 7 be finite. 
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it  may serve to dramatize the difference by calling it the ‘soft’ mode and the 
corresponding waves ‘soft ’ waves as opposed to the Tollmien-Schlichting waves 
which may be considered ‘hard’. In  the neighbourhood of the ‘soft’ mode for 
m = 1, wherever the imaginary interface is, we have shown that there are unstable 
modes when m is different from 1. In  other words the unstable modes discussed in 
this paper are not ‘near ’ the damped modes considered in the usual theory, but 
near the soft modes ignored by it, and are brought out when there is a discontinuity 
in viscosity. 

The arguments advanced here are quite similar to those I gave in an appendix 
to Benjamin’s (1957) paper and again in my own (1963) paper to explain the 
instability of a liquid layer flowing down a vertical plane at  very low Reynolds 
numbers, which at first also seemed unbelievable. Now it is generally accepted 
and it is understood that its cause is the longitudinal component of gravity, which 
supplies the power to the unstable disturbance. What supplies the power to the 
unstable disturbances treated in this paper is either the moving plate or the 
pressure gradient. Whether the disturbance can derive power from the mean flow 
sustained by these sources through the non-linear terms in the Navier-Stokes 
equations of motion can only be determined from a detailed study of the Orr- 
Sommerfeld equation and the boundary conditions. And such a study is precisely 
what has been done here. One can in fact obtain an integral formula from the 
Orr-Sommerfeld equation and the boundary conditions and interpret the formula 
from the point of view of energy. When the eigenfunction 4 found in the solution 
is substituted in the integrals of that formula, ci will be what we have given. 
That means unstable disturbances can be sustained by the available sources of 
power. 

The limiting case of infinite viscosity in either layer will now be discussed. In  
that case only one layer is flowing, and the flow becomes an ordinary plane 
Couette-Poiseuille flow. The two special flows treated in numerical detail in this 
paper then become either an ordinary plane Couette flow ( 5  4) or an ordinary 
plane Poiseuille flow. The former is known to be stable for all Reynolds numbers. 
The latter, as shown by Heisenberg (1 924) and Lin (1  945), is certainly stable at low 
Reynolds numbers. Do the results of these limiting cases contradict the present 
results? This is a question that is certain to occur in the minds of workers in 
hydrodynamic stability. 

The answer is in the negative. The most important thing to recognize is that 
a rigid plane boundary is not a proper limit of the interface as p, or ,uz approaches 
infinity. If ,ul (or ,uz) is large, the rate of deformation is very small in the very 
viscous layer. But given enough time the interface will deform and become wavy. 
Thus, however large ,ul or ,u2 is, the interface should not be considered a rigid 
plane boundary. Thus the apparent contradiction does not really exist. 

But it would be reassuring to see what happens to the analysis as ,ul or p2 
approaches infinity. It is sufficient to consider the case treated in § 4 (U, + 0 )  as 
,ul approaches infinity, or as m + 0 ,  because the other limiting cases behave 
similarly. In this case (9) shows that A,, a,, and b are all of order 1 as far as ,ul 
or m is concerned. A ,  and a1 are of the order of m. So is c& from (34). From the 
equations preceding (34) it  is evident that B,, C,, and D, are all of order 1, 
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whereas B,, C,, and D, are of order m-l. This makes h,, hi of order llm, and hence 
J of order 1. Hence from (41) ci is of the order of R, which is of the order of 
m (or pj l ) .  Thus in the limit not only ci but also Ac' = ic, are both zero. Thus even 
t o  the second approximation c' is zero. From ( 2 5 )  it  can be seen that 7 is of the 
order m-l and therefore greater than #(O) or v' by an order of magnitude. If the 
magnitude of 7 is taken to be the standard, then # ( O )  or x(0)  should be zero. Why 
are they not zero in (33)? Remembering that the eigenfunctions of the differential 
system are determined only up to  a multiplicative constant, we see that multi- 
plication of (33) by m would make #o equal to zero in the limit and, what is more 
revealing, would in the limit remove only the constant term from xo, since B,, 
C,, and D, are of order m-l. This shows that ~ ~ ( 0 )  is indeed zero in the limit. 
Higher-order approximations do not change the fact that x(0) is zero. Thus the 
apparent difficulty encountered in ( 2 5 ) ,  ( 2 6 ) )  and (30) as c' -+ 0 is resolved for the 
case p1 -+ 00, and similarly for the case p, -+ 0. The limiting flow corresponds in 
fact to the flow with a wavy interface, on which the velocity perturbations u' and 
v' are exactly zero. It is a case of neutral stability because it is simply the flow in 
a channel with a wavy wall. And we have demonstrated that in the neighbour- 
hood of this seemingly insignificant case of neutral stability are innumerable 
cases of instability due to viscosity variation. 

Finally, two points will be emphasized. First, the analysis presented here is 
fully applicable to two fluids of different densities as well as viscosities. Examples 
have been given for two fluids of equal density and different viscosities only to 
dramatize the fact that the instability is due to viscosity variation alone, and 
cannot be attributed to anything else. Secondly, since the fluids have been 
considered to be non-diffusive in viscosity as well as in density, the criticism 
might be raised that the instability discovered might be a result of neglecting to 
treat properly the so-called critical layer when the diffusion equation 

DpIDt = K A ~  

DpIDt = 0 is truncated to 
upon the neglect of diffusivity. There is no basis for this criticism. For in the 
results given here c is never equal to U at the interface, implying that, had the 
viscosity variation been continuous, the place where c is equal to U, or U, for the 
corresponding mode would fall outside of the range of viscosity variation. The 
question of the critical layer therefore does not arise. Note that the question 
concerning the ordinary critical layer also does not arise since Rayleigh's equation 
is never used instead of the Orr-Sommerfeld equation. The instability found 
here simply is unaffected by the non-consideration of the function of the critical 
layer in the analogous case of continuous viscosity variation. From the physical 
point of view non-diffusity is not unrealistic since there are many oils which do 
not mix at all with water, for instance. 
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